Pioneering Process Could Revolutionise Solar Power Usage

Experimental two-electrode setup showing the photoelectrochemical cell illuminated with simulated solar light.  Credit: Katarzyna Sokól

The harnessing of solar power has taken a new leap after British scientists finding a breakthrough of splitting water into hydrogen and oxygen. The altering of the photosynthetic machinery in plants helped achieve this groundbreaking development.

Photosynthesis is an important reaction in which plants convert sunlight into energy. The process breaks down oxygen as a by-product. And, the hydrogen produced when the water is split could prove to be a green and unlimited source of renewable energy.

The new study, contributed by scientists of University of Cambridge led by St. John’s College have used semi-artificial photosynthesis to explore new ways to produce and store solar energy. The researchers used a blend of contemporary technologies and biological components to convert water into hydrogen and oxygen from natural sunlight.

The novel platform to achieve unassisted solar-driven water-splitting was developed in Cambridge’s Department of Chemistry at the Reisner Laboratory. And, the key findings of the research could revolutionize the systems used for renewable energy.

In the past, the scaling process of renewable energy created through artificial photosynthesis for industrial usage was found impaired. This was attributed to the catalysts used in the process, which was found to be expensive and toxic. And, to overcome this limitation the Cambridge researchers used enzymes to create the desired result.

Katarzyna Sokól, lead author and PhD student at St John’s College along with her team managed to reactivate a process in the algae, which has been dormant for quite some time. The findings are expected to help other researchers to develop innovative model systems for solar energy conversion. Sokól reiterated that the research findings could lead to the emergence of more robust solar technology. She added that the approach could be used to couple other reactions together to see what can be done, learn from the reactions and then build synthetic, more robust solar energy technology.

The model is reportedly the first to use hydrogenase and photosystem II successfully to create semi-artificial photosynthesis driven solely by solar power. And, this breakthrough research has been published recently in the Nature Energy journal.

Comments are closed.